A HMM text classification model with learning capacity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Learning a Deep Hybrid Model for Semi-Supervised Text Classification

We present a novel fine-tuning algorithm in a deep hybrid architecture for semisupervised text classification. During each increment of the online learning process, the fine-tuning algorithm serves as a top-down mechanism for pseudo-jointly modifying model parameters following a bottom-up generative learning pass. The resulting model, trained under what we call the Bottom-Up-Top-Down learning a...

متن کامل

Active Learning with Rationales for Text Classification

We present a simple and yet effective approach that can incorporate rationales elicited from annotators into the training of any offthe-shelf classifier. We show that our simple approach is effective for multinomial naı̈ve Bayes, logistic regression, and support vector machines. We additionally present an active learning method tailored specifically for the learning with rationales framework.

متن کامل

Active learning for text classification with reusability

Where active learning with uncertainty sampling is used to generate training sets for classification applications, it is sensible to use the same type of classifier to select the most informative training examples as the type of classifier that will be used in the final classification application. There are scenarios, however, where this might not be possible, for example due to computational c...

متن کامل

Rule Learning with Negation for Text Classification

Classification rule generators that have the potential to include negated features in their antecedents are generally acknowledged to generate rules that have greater discriminating power than rules without negation. This can be achieved by including the negation of all features as part of the input. However, this is only viable if the number of features is relatively small. There are many appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal

سال: 2015

ISSN: 2255-2863

DOI: 10.14201/adcaij2014332134